Cuaterniones en Física

CuaternionesLos griegos pensaban que la geometría describía el espacio real en el que vivimos, y suponían que el espacio físico tenía que ser euclidiano. La pregunta matemática «¿puede existir un espacio tetradimensional en un sentido conceptual?» se confundía con la pregunta física «¿puede existir un espacio real con cuatro dimensiones?». […]

 

La geometría empezó a liberarse de este punto de vista restringido cuando los algebristas del Renacimiento en Italia tropezaron sin querer con una profunda ampliación del concepto de número, al aceptar la existencia de una raíz cuadrada de menos uno. Wallis, Wessel, Argand y Gauss estudiaron cómo interpretar los números complejos resultantes como puntos en un plano, liberando a los números de las ataduras unidimensionales de la recta real. En 1837, el matemático irlandés William Rowan Hamilton redujo todo el tema al álgebra, definiendo un número complejo x + iy como un par de números reales (x,y). Además definió la suma y la multiplicación de pares mediante las reglas

 


(x, y) + (u, v) = (x + u, y + v) 

(x, y) (u, v) = (xu — yv, xv + yu),


En esta aproximación, un par de la forma (x,0) se comporta exactamente igual que el número real x, y el par especial (0,1) se comporta como i. La idea es simple, pero apreciarla requiere un concepto sofisticado de la existencia matemática.

Luego Hamilton se fijó en algo más ambicioso. Era bien sabido que los números complejos hacen posible resolver muchos problemas de física matemática de sistemas en el plano, utilizando métodos simples y elegantes. Un truco similar para el espacio tridimensional tendría un valor incalculable. Por ello trató de inventar un sistema de números tridimensional, con la esperanza de que el cálculo infinitesimal asociado resolvería problemas importantes de física matemática en el espacio tridimensional. Supuso tácitamente que este sistema satisfaría todas las leyes usuales del álgebra. Pero pese a sus heroicos esfuerzos, no pudo encontrar un sistema semejante.

Con el tiempo descubrió por qué. Es imposible.

Entre las «leyes usuales del álgebra» está la ley conmutativa de la multiplicación, que afirma que ab = ba. Hamilton había estado luchando durante años por concebir mi álgebra efectiva para tres dimensiones. Finalmente encontró una, un sistema de números a los que llamó cuaterniones. Pero era un álgebra de cuatro dimensiones, no tres, y su multiplicación no era conmutativa.

Los cuaterniones se parecen a los números complejos, pero en lugar de un «nuevo» número i hay tres: i, j, k. Un cuaternión es una combinación de éstos, por ejemplo 7 + 8i – 2j + 4k. De la misma forma que los números complejos son bidimensionales, construidos a partir de dos cantidades independientes 1 e i, los cuaterniones son tetradimensionales, construidos a partir de cuatro cantidades independientes 1, i, j y k. Pueden formalizarse algebraicamente como cuádruplas de números reales, con reglas particulares para la suma y la multiplicación.

[…]

Espacio n dimensional

Mientras tanto, los físicos estaban desarrollando sus propias nociones de espacios de dimensiones superiores, motivados no por la geometría sino por las ecuaciones de Maxwell para el electromagnetismo. Aquí los campos eléctrico y magnético son vectores; tienen una dirección en el espacio tridimensional tanto como magnitud. Los vectores son flechas, por así decir, alineadas con el campo eléctrico o el magnético. La longitud de la flecha muestra la intensidad del campo, y su dirección muestra hacia dónde apunta el campo.

En la notación de la época las ecuaciones de Maxwell eran ocho, pero incluían dos grupos de tres ecuaciones, una por cada componente del campo eléctrico (o magnético) en cada una de las tres dimensiones del espacio. Haría la vida mucho más fácil idear un formalismo que recogiese cada uno de estos tríos en una única ecuación vectorial. Maxwell lo consiguió utilizando cuaterniones, pero su enfoque era algo tosco. Independientemente, el físico Josiah Willard Gibbs y el ingeniero Oliver Heaviside encontraron una manera más simple de representar vectores algebraicamente. En 1881 Gibbs editó un librito privado, Elementos de análisis vectorial, para ayudar a sus estudiantes. Explicaba que sus ideas habían sido desarrolladas por conveniencia de uso antes que por elegancia matemática. Sus notas fueron desarrolladas por Edwin Wilson, y ambos publicaron un libro conjunto Análisis vectorial en 1901. Heaviside dio con las mismas ideas generales en el primer volumen de su Teoría electromagnética en 1893 (los otros dos volúmenes aparecieron en 1899 y 1912).

Los diversos sistemas —cuaterniones de Hamilton, números hipercomplejos de Grassmann y vectores de Gibbs— convergieron rápidamente hacia la misma descripción matemática de un vector: es una tripleta de números (x, y, z). Al cabo de 250 años, los matemáticos y físicos del mundo habían vuelto a Descartes —pero ahora la notación de coordenadas era sólo parte de la historia. Las tripletas no sólo representaban puntos: representaban magnitudes dirigidas. Eso suponía una enorme diferencia— no para el formalismo, sino para su interpretación, su significado físico.

Los matemáticos se preguntaban cuántos sistemas de números hipercomplejos podría haber. Para ellos la pregunta no era «¿son útiles?», sino «¿son interesantes?». Por eso, los matemáticos se centraron principalmente en las propiedades algebraicas de sistemas de números hipercomplejos, para cualquier n. Había, de hecho, espacios n-dimensionales, pero de entrada todo el mundo pensaba algebraicamente y los aspectos geométricos eran minimizados.

Stewart, Ian (2008). Historia de las matemáticas en los últimos 10.000 años.

Barcelona: Crítica, 233-5.

revistametabasis.com

ISSN 2605-3489

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s